A State-space Mixed Membership Blockmodel for Dynamic Network Tomography By
نویسندگان
چکیده
In a dynamic social or biological environment, the interactions between the actors can undergo large and systematic changes. In this paper we propose a model-based approach to analyze what we will refer to as the dynamic tomography of such time-evolving networks. Our approach offers an intuitive but powerful tool to infer the semantic underpinnings of each actor, such as its social roles or biological functions, underlying the observed network topologies. Our model builds on earlier work on a mixed membership stochastic blockmodel for static networks, and the state-space model for tracking object trajectory. It overcomes a major limitation of many current network inference techniques, which assume that each actor plays a unique and invariant role that accounts for all its interactions with other actors; instead, our method models the role of each actor as a time-evolving mixed membership vector that allows actors to behave differently over time and carry out different roles/functions when interacting with different peers, which is closer to reality. We present an efficient algorithm for approximate inference and learning using our model; and we applied our model to analyze a social network between monks (i.e., the Sampson’s network), a dynamic email communication network between the Enron employees, and a rewiring gene interaction network of fruit fly collected during its full life cycle. In all cases, our model reveals interesting patterns of the dynamic roles of the actors.
منابع مشابه
A state-space mixed membership blockmodel for dynamic network tomography
In a dynamic social or biological environment, the interactions between the underlying actors can undergo large and systematic changes. The latent roles or membership of the actors as determined by these dynamic links will also exhibit rich temporal phenomena, assuming a distinct role at one point while leaning more towards a second role at an another point. To capture this dynamic mixed member...
متن کاملEvolving Cluster Mixed-Membership Blockmodel for Time-Evolving Networks
Time-evolving networks are a natural representation for dynamic social and biological interactions. While latent space models are gaining popularity in network modeling and analysis, previous works mostly ignore networks with temporal behavior and multi-modal actor roles. Furthermore, prior knowledge, such as division and grouping of social actors or biological specificity of molecular function...
متن کاملEvolving Cluster Mixed-Membership Blockmodel for Time-Varying Networks
Time-evolving networks are a natural representation for dynamic social and biological interactions. While latent space models are gaining popularity in network modeling and analysis, previous works mostly ignore networks with temporal behavior and multi-modal actor roles. Furthermore, prior knowledge, such as division and grouping of social actors or biological specificity of molecular function...
متن کاملCopula Mixed-Membership Stochastic Blockmodel
The Mixed-Membership Stochastic Blockmodels (MMSB) is a popular framework for modelling social relationships by fully exploiting each individual node’s participation (or membership) in a social network. Despite its powerful representations, MMSB assumes that the membership indicators of each pair of nodes (i.e., people) are distributed independently. However, such an assumption often does not h...
متن کاملCopula Mixed-Membership Stochastic Blockmodel with Subgroup Correlation
The Mixed-Membership Stochastic Blockmodel (MMSB) is a popular framework for modeling social network relationships which fully exploits each individual node participation (or membership) in a social structure. Despite its powerful representations, this model makes an assumption that the distributions of relational membership indicators between the two nodes are independent. Under many social ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010